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Results 

Table 1 

Cancer 
Type

Unsupervised 
Logrank

survClsut
Logrank

Method

HNSC 4.7(P=0.192) 23.6(P<0.001) PARADIGM

UCEC 16.1(P=0.001) 43.7(P<0.001) Manual

LGG 64.5(P<0.001) 267.7(P<0.001) COCC

LIHC 1.71(P=0.425) 25.3(P<0.001) iCluster

LUAD 9.69(P=0.084) 10(P=0.002) iCluster

STAD 3.44(P=0.487) 7.3(P=0.029) Manual
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• Unsupervised clustering has been widely used

to identify cancer molecular subtypes and

associated alterations for discovery of

therapeutic targets. Survival analysis is typically

done post-clustering. Clustering methods with

direct integration of survival information are

desired to identify clinically relevant subtypes.

• We developed survClust, a supervised

integrative clustering algorithm using a

weighted distance approach to delineate

prognostic subtypes and associated molecular

features across multiple omics platforms

(Figure1)
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• survClust identifies more distinct survival

subtypes than the integrated subtypes from

unsupervised clustering in most TCGA cancer

types (Table 1).

• Individual platforms show different

prognostic values in different cancer types

(Figure 2). Integration provides improvement

in prognostic stratification in most cancer

types, particularly in HNSC.

• In LGG, survClust leads to more refined

prognostic stratification and discovery of

additional subgroups beyond IDH-mutant,

1p/19q-codeletion.
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Figure 1

Discussion 

• We developed a weighted distance method

for molecular prognostic stratification and

demonstrated the performance in TCGA pan-

cancer analysis.

• This approach can also be extended to other

clinical outcomes, including treatment

response and progression–free survival
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