

Memorial Sloan Kettering Cancer Center

### Multi-Omics Supervised Integrative Clustering (MOSAIC) on scNMT-seq mouse gastrulation dataset

Arshi Arora BIRSBiointegration 2020 joint work with Dr. Ronglai Shen

June 17, 2020 Arshi Arora Research Biostatistician II Memorial Sloan Kettering Cancer Center

### Motivation



\*Arora A, Olshen AB, Seshan VE, and Shen R. Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering. Biorxiv



### unsupervised vs supervised clustering via simulation

Typical data set



| MOSA<br>truth | MOSAIC 3-class vs simulated truth |     |     |  |  |  |  |  |  |
|---------------|-----------------------------------|-----|-----|--|--|--|--|--|--|
|               | 1                                 | 2   | 3   |  |  |  |  |  |  |
| 1             | 100                               | 0   | 0   |  |  |  |  |  |  |
| 2             | 0                                 | 100 | 0   |  |  |  |  |  |  |
| 3             | 0                                 | 0   | 100 |  |  |  |  |  |  |

| unsupervised clustering vs<br>simulated truth |    |    |    |  |  |  |  |
|-----------------------------------------------|----|----|----|--|--|--|--|
|                                               | 1  | 2  | 3  |  |  |  |  |
| 1                                             | 68 | 0  | 0  |  |  |  |  |
| 2                                             | 32 | 41 | 28 |  |  |  |  |
| 3                                             | 0  | 59 | 72 |  |  |  |  |





Memorial Sloan Kettering **Cancer** Center

2

3

1

### **MOSAIC Workflow**



$$\boldsymbol{I}_{\boldsymbol{w}} = \frac{\sum_{m=1}^{M} \boldsymbol{D}_{m}}{M}$$

 $D_m$  = weighted distance matrix of mth data type



### **Step 2- getDist**

getDist

Weighted Distance Matrix



Consider a data type  $X_m$  (where, m=1, ..., M data types) of varying samples  $(N_m)$  and features  $(p_m)$  $\boldsymbol{a_p}$  and  $\boldsymbol{b_p}$  are a pair of samples measured for p features

The weighted distance<sup>1</sup>-

$$d_w(\boldsymbol{a}, \boldsymbol{b}) = \sqrt{(\boldsymbol{a} - \boldsymbol{b})^T W(\boldsymbol{a} - \boldsymbol{b})}$$

Where **W** is a  $p \times p$  diagonal weight matrix with  $W = diag\{w_1, ..., w_p\}$ .

 $X' = X * W^{1/2}$ 

$$d_w(a',b') = d_w(b',a') = \sqrt{\sum_{j=1}^p (a_j'-b_j')^2}$$



1. Xing, Eric P., et al. "Distance metric learning with application to clustering with side-information." Advances in neural information processing systems. 2003.

#### References:

# Step 2- getDist – calculation of weights



$$w_{jc} = \log \left[ \frac{l(x_{ijc} | \mu_{jc}, \sigma_{jc}^2)}{l(x_{ijc} | \mu_{j}, \sigma_{j}^2)} \right]$$
$$w_j = \max(w_{j1}, w_{j2}, \dots, w_{jk})$$

Where  $x_{ijc}$ , is the expression value of m<sup>th</sup> datatype for i<sup>th</sup> sample and j<sup>th</sup> feature

 $\mu_{jc}$  = mean of a feature j only considering samples belonging to cluster c, where c = 1,2,3...k,  $\sigma_{jc}^2$  = standard deviation of a feature j only considering samples belonging to cluster c

 $\mu_j$ = population mean, all samples across all clusters,,  $\sigma_j^2$ = population standard deviation, considering all samples



### **Overfitting is avoided by cross-validation**

• We did 5-fold cross validation for 50 rounds of cross validation to arrive at a consolidated solution for a particular k cluster



Concludes one round of cross-validation

- Perform 50 such rounds with random 5 splits of the data
- Collect 50 cross validated survClust predicted class labels for each k = 2 to 7



# Why MOSAIC?

- MOSAIC finds supervised clusters, with an out come of interest in mind. This is especially useful when correlation exists between various outcomes.
- MOSAIC can run with missing data. However interpretations should be made carefully.
- MOSAIC reduces computation space from sample x feature to sample x sample
- Efficient in dealing with noisy features



### scNMT seq Mouse gastrulation – Input data

|              |        |          |         | features     |                |         |
|--------------|--------|----------|---------|--------------|----------------|---------|
|              |        |          | I       | missing >50% | 6              | final   |
|              | #cells | features | missing | samples      | final features | missing |
| acc_DHS      | 826    | 290      | 0.19    | 0            | 290            | 0.19    |
| acc_p300     | 826    | 138      | 0.34    | 0            | 138            | 0.34    |
| acc_cgi      | 826    | 4459     | 0.33    | 0            | 4459           | 0.33    |
| acc_CTCF     | 826    | 898      | 0.37    | 0            | 898            | 0.37    |
| acc_promoter | 826    | 16518    | 0.28    | 0            | 5000           | 0.30    |
| acc_genebody | 826    | 17139    | 0.14    | 0            | 5000           | 0.24    |
| met_DHS      | 826    | 66       | 0.24    | 3            | 63             | 0.22    |
| met_p300     | 826    | 101      | 0.45    | 24           | 77             | 0.43    |
| met_cgi      | 826    | 5536     | 0.42    | 511          | 5000           | 0.41    |
| met_CTCF     | 826    | 175      | 0.48    | 51           | 124            | 0.46    |
| met_promoter | 826    | 12092    | 0.40    | 595          | 5000           | 0.42    |
| met_genebody | 826    | 15837    | 0.22    | 140          | 5000           | 0.24    |
| rna          | 826    | 18345    | 0.00    | 0            | 5000           | 0.00    |



### **Results – MOSAIC with Stage**

MOSAIC was run on 13 data types wrt stage. For 5 folds and 50 rounds of CV.





#### **MOSAIC on RNA data type with Stage**

RNA 5-class MOSAIC vs stage, top500



### **RNA MOSAIC solution vs kmeans**

|   | E4.5 | E5.5 | E6.5 | E7.5 |
|---|------|------|------|------|
| 1 | 0    | 24   | 45   | 6    |
| 2 | 0    | 0    | 187  | 100  |
| 3 | 104  | 0    | 0    | 0    |
| 4 | 0    | 0    | 31   | 237  |
| 5 | 0    | 84   | 8    | 0    |

AMI = 0.55, AMI for lineage 0.56

|   | E4.5 | E5.5 | E6.5 | E7.5 |
|---|------|------|------|------|
| 1 | 0    | 0    | 30   | 228  |
| 2 | 3    | 7    | 74   | 20   |
| 3 | 58   | 0    | 0    | 0    |
| 4 | 0    | 77   | 125  | 89   |
| 5 | 43   | 24   | 42   | 6    |

AMI = 0.34, add AMI for lineage =0.51

|      | Ectoderm | Endoderm | Epiblast | ExE_ecto<br>derm | Mesoder<br>m | Primitive<br>_endode<br>rm | Primitive<br>_Streak | Visceral_endod<br>erm | NA |
|------|----------|----------|----------|------------------|--------------|----------------------------|----------------------|-----------------------|----|
| E4.5 | 0        | 0        | 60       | 0                | 0            | 43                         | 0                    | 0                     | 1  |
| E5.5 | 0        | 0        | 84       | 0                | 0            | 0                          | 0                    | 24                    | 0  |
| E6.5 | 0        | 0        | 146      | 8                | 28           | 0                          | 43                   | 45                    | 1  |
| E7.5 | 43       | 81       | 44       | 0                | 141          | 0                          | 33                   | 0                     | 1  |





met\_CTCF;AMI=0.24

# Integrating 5 data types and stage as outcome

| Data type    | AMI  | Features |
|--------------|------|----------|
| RNA          | 0.56 | 5000     |
| met_promoter | 0.49 | 5000     |
| met_genebody | 0.36 | 5000     |
| met_cgi      | 0.32 | 5000     |
| acc_DHS      | 0.29 | 290      |

#### Overlap between top 1000 genes





# Integrating 5 data types and stage as outcome – AMI tracks close to rna





### **Integrated solution**

| AMI = 0.53, stage |      |      |      |      |  |  |  |
|-------------------|------|------|------|------|--|--|--|
|                   | E4.5 | E5.5 | E6.5 | E7.5 |  |  |  |
| 1                 | 0    | 1    | 211  | 337  |  |  |  |
| 2                 | 0    | 83   | 7    | 0    |  |  |  |
| 3                 | 1    | 22   | 52   | 6    |  |  |  |
| 4                 | 103  | 2    | 1    | 0    |  |  |  |

| AMI = 0.62, RNA k5 solution |    |     |     |     |    |  |  |  |  |
|-----------------------------|----|-----|-----|-----|----|--|--|--|--|
| rnak5                       | 1  | 2   | 3   | 4   | 5  |  |  |  |  |
| Integ 1                     | 0  | 280 | 0   | 268 | 1  |  |  |  |  |
| 2                           | 0  | 7   | 0   | 0   | 83 |  |  |  |  |
| 3                           | 72 | 0   | 1   | 0   | 8  |  |  |  |  |
| 4                           | 3  | 0   | 103 | 0   | 0  |  |  |  |  |

| AN | 1I = 0.33, line | age      |          |                  |              |                            |                      |                           |
|----|-----------------|----------|----------|------------------|--------------|----------------------------|----------------------|---------------------------|
|    | Ectoderm        | Endoderm | Epiblast | ExE_ecto<br>derm | Mesoder<br>m | Primitive<br>_endode<br>rm | Primitive<br>_Streak | Visceral_<br>endoder<br>m |
| 1  | 43              | 75       | 185      | 0                | 169          | 0                          | 75                   | 0                         |
| 2  | 0               | 0        | 89       | 0                | 0            | 0                          | 1                    | 0                         |
| 3  | 0               | 6        | 0        | 8                | 0            | 0                          | 0                    | 66                        |
| 4  | 0               | 0        | 60       | 0                | 0            | 43                         | 0                    | 3                         |



### **Results – MOSAIC with Lineage**

MOSAIC was run on 13 data types wrt stage. For 5 folds and 50 rounds of CV.

| Ectoderm  | Fndoderm  | Fnihlast    | ExE_ectode | Mesoderm    | Primitive_en | Primitive_S | Visceral_end | <na></na> |
|-----------|-----------|-------------|------------|-------------|--------------|-------------|--------------|-----------|
|           | Epiblast  | rm          |            | doderm      | treak        | oderm       |              |           |
| 43(5.21%) | 81(9.81%) | 334(40.44%) | 8(0.97%)   | 169(20.46%) | 43(5.21%)    | 76(9.2%)    | 69(8.35%)    | 3(0.36%)  |

| Ectoderm  | Endoderm   | Epiblast    | Mesoderm    | Primitive_Streak |
|-----------|------------|-------------|-------------|------------------|
| 43(6.12%) | 81(11.52%) | 334(47.51%) | 169(24.04%) | 76(10.81%)       |





# **RNA MOSAIC with lineage vs kmeans**

|   | Ectoderm | Endoderm | Epiblast | Mesoderm | Primitive_Streak |
|---|----------|----------|----------|----------|------------------|
| 1 | 0        | 2        | 0        | 168      | 12               |
| 2 | 0        | 0        | 142      | 0        | 0                |
| 3 | 43       | 0        | 192      | 1        | 61               |
| 4 | 0        | 79       | 0        | 0        | 3                |

AMI = 0.65, AMI with stage 0.48

|   | E4.5 | E5.5 | E6.5 | E7.5 |
|---|------|------|------|------|
| 1 | 0    | 0    | 30   | 228  |
| 2 | 3    | 7    | 74   | 20   |
| 3 | 58   | 0    | 0    | 0    |
| 4 | 0    | 77   | 125  | 89   |
| 5 | 43   | 24   | 42   | 6    |

AMI for stage =0.34, add AMI for lineage =0.51



### **MOSAIC on RNA data type with Lineage**

cluster lineage stage cluster 2 З 4 0 lineage Ectoderm -1 Endoderm Epiblast ExE ectoderm VALUE LACTE CALL MADE -2 Mesoderm Primitive\_endoder Primitive\_Streak Visceral endoderr en man an an air air an an an a bharair a sa NA stage E4.5 E5.5 E6.5 E7.5 2 3 4 HUN ARE 43 0 0 0 Ectoderm 79 Endoderm 0 142 192 **Epiblast** 168 0 1 0 Mesoderm C. B. Star and St. St. 3 12 61 0 **Primitive Streak** 

RNA 4-class MOSAIC vs lineage, top500



# Conclusions

- MOSAIC finds supervised clusters, with an out come of interest in mind. Where kmeans might give mixed results. Supervised clustering is much more efficient and helps in sorting out different signals
- Integration of different data modalities with missing data
- MOSAIC is available on GitHub -

### **Future Work:**

- Imputation of missing data area where a lot of research has been done.
- In scNMT mouse data, stages have a temporal relationship, perhaps model ordinal relationship.
- Joint modeling of stage and lineage
- Integrated solution can be further improved



### References

- Shen, R. et al. Integrative subtype discovery in glioblastoma using iCluster. 7, e35236 (2012).
- Olshen, A.B., Venkatraman, E., Lucito, R. & Wigler, M.J.B. Circular binary segmentation for the analysis of array-based DNA copy number data. 5, 557-572 (2004).
- Xing, E.P., Jordan, M.I., Russell, S.J. & Ng, A.Y. in Advances in neural information processing systems 521-528 (2003).
- Torgerson, W.S. Theory and methods of scaling. (1958).
- Hartigan, J.A. & Wong, M.A.J.J.o.t.R.S.S.S.C. Algorithm AS 136: A k-means clustering algorithm. 28, 100-108 (1979).
- Mardia, K.V.J.C.i.S.-T. & Methods Some properties of clasical multi-dimesional scaling. 7, 1233-1241 (1978).
- Legendre, P. & Gallagher, E.D.J.O. Ecologically meaningful transformations for ordination of species data. 129, 271-280 (2001).
- Tibshirani, R., Walther, G. & Hastie, T.J.J.o.t.R.S.S.S.B. Estimating the number of clusters in a data set via the gap statistic. 63, 411-423 (2001).
- Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. 500, 415 (2013).
- Robertson, A.G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. 171, 540-556. e525 (2017).
- Hoadley, Katherine A., et al. "Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer." *Cell* 173.2 (2018): 291-304.



### Thanks! Questions?

# Acknowledgements

Ronglai Shen, PhD Associate Attending Biostatistician



Adam B. Olshen, PhD Venkatraman E. Seshan, PhD

